
王大寶, PK



虛擬機 - 惡意程式攻防的新戰場

 講師簡介
王大寶, 小時候大家叫他王小寶,長大後就稱王大寶,目前隸
屬一神祕單位. 雖然佯稱興趣在看書與聽音樂, 但是其實晚
上都在打Game. 長期於系統最底層打滾,熟悉ASM,C/C++,
對於資安毫無任何興趣,也無經驗,純粹是被某壞人騙上台, 
可以說是不可多得的素人講師!! 

 議程大綱：
現今的 CPU 都支援虛擬化專用指令集, 讓 VM 獲得硬體的
支援. 在這個場次中,我們將詳細地介紹 Intel 的 VT指令集
與其 Hypervisor 運作的機制. 此外我們將並介紹在惡意軟
體研究領域中在 Hypervisor 模式下能有哪些應用,包含惡意
程式技術與偵防分析的應用. 最後我們將介紹自行開發能在
Hypervisor 模式下運作的 Malware POC, 而且是無法被目
前防毒與防護系統偵測到! 



Agenda

 VMM on x86

 Hardware assisted architecture

 VMM software implementing

 Security & VMM



What is VMM

 Has full control over the platform

 A thin layer between the physical 
hardware and virtualized environment

 Be able to retain selective control from 
guest software

 The real world





現實是殘酷的, 從VM中醒過來不一定是好事 … :P



What is VMM (conti.)

Guest OS 1 Guest OS 2

VMM

Physical Processor



Types of Hypervisors



Intel® VT-x

 Introduced by Intel®

 Includes a new set of instructions

 Totally isolated environments for each guest

 Solved many problems which were caused by guest 
OS executing at the same level of host OS

 Provides better performance than byte code 
emulation



Keywords

 VMM runs at VMX root operation

 Guest software runs at VMX non-root 
operation

 Transition from VMM to guest software is 
called VM entry

 Transition from guest software to VMM is 
called VM exit



VMX root operation

 Check CPU capabilities

mov eax, 1

cpuid

test ecx, 20h

VMX – Virtual Machine Extensions

5



VMX root operation (conti.)

 Prepare a non-pageable memory 

(VMXON Region)

 storage of host context

 aligned to 4KB

 in MTRR range – Write Back (type 6)

 size = MSR#480 [43:32]

 rev_id = MSR#480 [31:0]
31 0

rev_id

43

VMXON Region Size

32



VMX root operation (conti.)

 Enable VMXE bit (bit13) in CR4

mov eax, cr4

or eax, Bit13

mov cr4, eax

13

VMXE – Virtual Machine Extensions Enabled



VMX root 
operation (conti.)
 VMXON instruction
vmxon phymem_vmxon_region

 Hello, real world…



VMX non-root operation

 Prepare a non-pageable memory (VMCS)

 storage of guest software states

 aligned to 4KB

 in MTRR range – Write Back (type 6)

 size = MSR#480 [43:32]

 rev_id = MSR#480 [31:0]



VMX non-root operation 
(conti.)
 Instructions to initialize VMCS
 VMCLEAR, VMPTRLD

 VMCLEAR
 Initialize the new VMCS region in memory

 Set the launch state to “clear”

 Invalidates the working VMCS pointer register

 VMPTRLD
 Initializes the working VMCS pointer with the new 

VMCS region's physical address.

 Validates the working VMCS pointer register



VMX non-root operation 
(conti.)
 Instructions to access specific field of 

VMCS
 VMWRITE, VMREAD

 Each field has its encoding
 Example:

○ GUEST_RIP = 681eh

○ To set GUEST_RIP into VMCS:
mov eax, 681eh

vmwrite eax, dword ptr NEW_GUEST_RIP

○ To get GUEST_RIP from VMCS:
mov eax, 681eh

vmread ebx, eax



VMX non-root operation 
(conti.)

 Now it is time to run guest software

 VMLAUNCH, VMRESUME

 Launch state of VMCS will be set to 

“launched”



VMM, VMCS, Guest OS

CPU#A CPU#B

VMXON Region #A

VMCS #1A

VMCS #2A

VMXON Region #B

VMCS #1B

VMCS #2B

Guest OS 1 Guest OS 2



VM exit handling

 VMM gets VM exit reason from VMCS, 

determines handle it or not

Bit Position(s) Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)



VM exit handling (conti.)

 VM exit basic reasons
 > 50

 Sensitive instructions

 Privilege registers change

 Exceptions

 …

 Exit qualification contains additional 
information

 Execute VMRESUME after handled VM exit



Lifecycle of a VMM software

VMXON VMM Guest VMXOFF

VMM Lives

VM Entry

VM Exit



System VMs

IA-32

Operation

VT-x Operations 

Ring 0

Ring 3VMX Root

Operation

VMX 

Non-root

Operation

. . .
Ring 0

Ring 3

VM 1

Ring 0

Ring 3

VM 2

Ring 0

Ring 3

VM n

VMXONVMLAUNCHVMRESUME

VM Exit VMCS

2

VMCS

n

VMCS

1



Security & VMM

 VMM is transparent to its guests

 A well-implemented VMM is very hard to be 

detected

 Almost all VMM-detection technologies in 

present are based on flaws of VMM itself

 A positive usage of VMM could be a very 

powerful weapon against various attacks of 

malwares

 So could be in either way…

 But…



Security & VMM (conti.)

 Difficulties in implementing VMM

 No OS API

 No existed input/output

 No existed drivers

 Developers implement everything in VMM

○ Disk read/write

○ Keyboard input/output

○ Control video RAM for output

○ Direct manipulation on NIC, USB stack



VMX vs. SMM

 In a software developer’s aspect, VMX 
operation is very similar to SMM
 Transparent to client

 Has processor context storage

 Full control over system

 Isolated environment, DIY everything

 Differences
 SMM is triggered by hardware

 SMM has higher priority than VMX

 SMM is not accessible at runtime



Malware and VMM

 How to detect or analysis Kernel Malware ??

User mode 

Malware

Kernel mode 

Malware

Kernel Behavior 

Monitor

???



Demo 1: Invisible VMM Keylogger

 A handcrafted key logger in VMM

 Capture KB input from I/O port

 Hidden File in Guest OS File system !

 Definitely invisible…Ya 

○ Cant be detected by any Anti-Virus or HIPS in 

the world



File System Implemented in VMM

hitkey2010 has been saved to disk

VMM Keylogger



Demo2: Rootkit Detection

 Physical Memory Forensics with VMM !!

 EPROCESS parsing

 SSDT parsing

 Etc.

 Demo our new toy



VMM on Forensic Approach

Found a process that hidden by Fu rootkit



Q&A



Reference

 Intel ® 64 and IA-32 Architectures Software 
Developer's Manual Vol.2, Vol.3

 http://code.google.com/p/hyperdbg/

 http://virtualizationtechnologyvt.blogspot.com/

 http://www.ibm.com/developerworks/cn/linux/l-
cn-vt/index.html

 http://www.invisiblethingslab.com/

http://code.google.com/p/hyperdbg/
http://virtualizationtechnologyvt.blogspot.com/
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.invisiblethingslab.com/

