
王大寶, PK



虛擬機 - 惡意程式攻防的新戰場

 講師簡介
王大寶, 小時候大家叫他王小寶,長大後就稱王大寶,目前隸
屬一神祕單位. 雖然佯稱興趣在看書與聽音樂, 但是其實晚
上都在打Game. 長期於系統最底層打滾,熟悉ASM,C/C++,
對於資安毫無任何興趣,也無經驗,純粹是被某壞人騙上台, 
可以說是不可多得的素人講師!! 

 議程大綱：
現今的 CPU 都支援虛擬化專用指令集, 讓 VM 獲得硬體的
支援. 在這個場次中,我們將詳細地介紹 Intel 的 VT指令集
與其 Hypervisor 運作的機制. 此外我們將並介紹在惡意軟
體研究領域中在 Hypervisor 模式下能有哪些應用,包含惡意
程式技術與偵防分析的應用. 最後我們將介紹自行開發能在
Hypervisor 模式下運作的 Malware POC, 而且是無法被目
前防毒與防護系統偵測到! 



Agenda

 VMM on x86

 Hardware assisted architecture

 VMM software implementing

 Security & VMM



What is VMM

 Has full control over the platform

 A thin layer between the physical 
hardware and virtualized environment

 Be able to retain selective control from 
guest software

 The real world





現實是殘酷的, 從VM中醒過來不一定是好事 … :P



What is VMM (conti.)

Guest OS 1 Guest OS 2

VMM

Physical Processor



Types of Hypervisors



Intel® VT-x

 Introduced by Intel®

 Includes a new set of instructions

 Totally isolated environments for each guest

 Solved many problems which were caused by guest 
OS executing at the same level of host OS

 Provides better performance than byte code 
emulation



Keywords

 VMM runs at VMX root operation

 Guest software runs at VMX non-root 
operation

 Transition from VMM to guest software is 
called VM entry

 Transition from guest software to VMM is 
called VM exit



VMX root operation

 Check CPU capabilities

mov eax, 1

cpuid

test ecx, 20h

VMX – Virtual Machine Extensions

5



VMX root operation (conti.)

 Prepare a non-pageable memory 

(VMXON Region)

 storage of host context

 aligned to 4KB

 in MTRR range – Write Back (type 6)

 size = MSR#480 [43:32]

 rev_id = MSR#480 [31:0]
31 0

rev_id

43

VMXON Region Size

32



VMX root operation (conti.)

 Enable VMXE bit (bit13) in CR4

mov eax, cr4

or eax, Bit13

mov cr4, eax

13

VMXE – Virtual Machine Extensions Enabled



VMX root 
operation (conti.)
 VMXON instruction
vmxon phymem_vmxon_region

 Hello, real world…



VMX non-root operation

 Prepare a non-pageable memory (VMCS)

 storage of guest software states

 aligned to 4KB

 in MTRR range – Write Back (type 6)

 size = MSR#480 [43:32]

 rev_id = MSR#480 [31:0]



VMX non-root operation 
(conti.)
 Instructions to initialize VMCS
 VMCLEAR, VMPTRLD

 VMCLEAR
 Initialize the new VMCS region in memory

 Set the launch state to “clear”

 Invalidates the working VMCS pointer register

 VMPTRLD
 Initializes the working VMCS pointer with the new 

VMCS region's physical address.

 Validates the working VMCS pointer register



VMX non-root operation 
(conti.)
 Instructions to access specific field of 

VMCS
 VMWRITE, VMREAD

 Each field has its encoding
 Example:

○ GUEST_RIP = 681eh

○ To set GUEST_RIP into VMCS:
mov eax, 681eh

vmwrite eax, dword ptr NEW_GUEST_RIP

○ To get GUEST_RIP from VMCS:
mov eax, 681eh

vmread ebx, eax



VMX non-root operation 
(conti.)

 Now it is time to run guest software

 VMLAUNCH, VMRESUME

 Launch state of VMCS will be set to 

“launched”



VMM, VMCS, Guest OS

CPU#A CPU#B

VMXON Region #A

VMCS #1A

VMCS #2A

VMXON Region #B

VMCS #1B

VMCS #2B

Guest OS 1 Guest OS 2



VM exit handling

 VMM gets VM exit reason from VMCS, 

determines handle it or not

Bit Position(s) Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)



VM exit handling (conti.)

 VM exit basic reasons
 > 50

 Sensitive instructions

 Privilege registers change

 Exceptions

 …

 Exit qualification contains additional 
information

 Execute VMRESUME after handled VM exit



Lifecycle of a VMM software

VMXON VMM Guest VMXOFF

VMM Lives

VM Entry

VM Exit



System VMs

IA-32

Operation

VT-x Operations 

Ring 0

Ring 3VMX Root

Operation

VMX 

Non-root

Operation

. . .
Ring 0

Ring 3

VM 1

Ring 0

Ring 3

VM 2

Ring 0

Ring 3

VM n

VMXONVMLAUNCHVMRESUME

VM Exit VMCS

2

VMCS

n

VMCS

1



Security & VMM

 VMM is transparent to its guests

 A well-implemented VMM is very hard to be 

detected

 Almost all VMM-detection technologies in 

present are based on flaws of VMM itself

 A positive usage of VMM could be a very 

powerful weapon against various attacks of 

malwares

 So could be in either way…

 But…



Security & VMM (conti.)

 Difficulties in implementing VMM

 No OS API

 No existed input/output

 No existed drivers

 Developers implement everything in VMM

○ Disk read/write

○ Keyboard input/output

○ Control video RAM for output

○ Direct manipulation on NIC, USB stack



VMX vs. SMM

 In a software developer’s aspect, VMX 
operation is very similar to SMM
 Transparent to client

 Has processor context storage

 Full control over system

 Isolated environment, DIY everything

 Differences
 SMM is triggered by hardware

 SMM has higher priority than VMX

 SMM is not accessible at runtime



Malware and VMM

 How to detect or analysis Kernel Malware ??

User mode 

Malware

Kernel mode 

Malware

Kernel Behavior 

Monitor

???



Demo 1: Invisible VMM Keylogger

 A handcrafted key logger in VMM

 Capture KB input from I/O port

 Hidden File in Guest OS File system !

 Definitely invisible…Ya 

○ Cant be detected by any Anti-Virus or HIPS in 

the world



File System Implemented in VMM

hitkey2010 has been saved to disk

VMM Keylogger



Demo2: Rootkit Detection

 Physical Memory Forensics with VMM !!

 EPROCESS parsing

 SSDT parsing

 Etc.

 Demo our new toy



VMM on Forensic Approach

Found a process that hidden by Fu rootkit



Q&A



Reference

 Intel ® 64 and IA-32 Architectures Software 
Developer's Manual Vol.2, Vol.3

 http://code.google.com/p/hyperdbg/

 http://virtualizationtechnologyvt.blogspot.com/

 http://www.ibm.com/developerworks/cn/linux/l-
cn-vt/index.html

 http://www.invisiblethingslab.com/

http://code.google.com/p/hyperdbg/
http://virtualizationtechnologyvt.blogspot.com/
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.ibm.com/developerworks/cn/linux/l-cn-vt/index.html
http://www.invisiblethingslab.com/

