The cooklie monster
_j,- ur browsers

@filedescriptor
HITCON 2019

@filedescriptor

THIS
1S

AVATAR

From Hong Kong

Pentester for Cure53

Love WebApp Sec & Browser Sec

Bug Bounty Hunter (#1 on Twitter's program)

Motivation

Out of Scope

Domain assets.spotify.com

Motivation

Out-of-Scope Sub-Domains:

e http://*.pornhub.com/

e http://*.pornhub.com/live/

e http://*.pornhub.com/jobs/

e http://*.pornhubpremium.com/

e http://*.pronstore.com/

Out of Scope

Domain assets.spotify.com

Motivation

bugtriage-rob closed the report and changed the status to @ Informative. Aug 4th (3 years ago)
Thanks for your report.

While we appreciate your efforts to help keep Uber secure, I'm afraid this doesn't qualify for this program as the domain
* ,et.uber.com is out of scope for this program. You can find the list of in-scope properties on our program page:
hackerone.com/uber

Thanks and good luck in your future bug hunting. Out-of-Scope Sub-Domains:

e http://*.pornhub.com/

raghav_bisht posted a comment.

e http://*.pornhub.com/live/

Respected...
)% :
Its a request Once you patched the vulnerability "Do disclose the report" * http://*.pornhub.com/jobs/
e http://*.pornhubpremium.com/
lyoung-uber reopened this report. e http://*.pronstore.com/
_ Out of Scope
lyoung-uber closed the report and changed the status to ® Not Applicable.
Closing as Not Applicable since this is out-of-scope.
Domain assets.spotify.com

raghav_bisht posted a comment. 7
@lyoung-uber you fucking asshole mother fucker | know this is "Out of scope" and your team member @bugtriage-rob marked it has
Informative and closed the report, still | didn't argue about it and accepted it........ fucker.

| respectfully asked you to disclosure my report and you moron mother fucker deducted my Reputation Point

Bloody Mother Fucker..................... TAXI DRIVER.....

1966

Ny TV e,

The Dark Age

Netscape's cookie_spec RFC 2109 RFC 2965
Basic Syntax More Attributes Obsoletes RFC 2109
Mechanism Privacy Control Set-Cookie2 & Cookie2

No browser followed these specs!

The Modern Age

REC 6265 Cookie Prefixes Same-site Cookies Strict Secure Cookies
(RFC6265bis) (RFC6265bis) (RFC6265bis)
Obsoletes RFC 2965
Improves Integrity Prevents secure
Summarizes reality across subdomains Kills CSRF & Co. cookies overwrite from
over secure channel non-secure origin
HttpOnly flag

5665666606606
566566660660
5665666606606
5665666606606
566566660660
56666660660
5665666606606
566566660660
5665666606606
566566660660

é

HTTP Response

HTTP/1.1 200 OK

[oo.]
Set-Cookie: sid=123; path=/admin

JavaScript API (write)

document.cookie = 'lang=en'

HTTP Response : Subsequent HTTP Request

HTTP/1.1 200 OK . POST /admin HTTP/1.1
[...] : [...]

Set-Cookie: sid=123; path=/admin : Cookie: sid=123; lang=en
JavaScript API (write) JavaScript API (read)
document.cookie = 'lang=en' § document.cookie

// sid=123; lang=en

*Attributes do not appear in requests

Name Value Attribute Flag
Set-Cookie: sid=123; path=/admin; Secure

Attribute Flag

Expires Max-Ageé Domainé Path SameSite Secureé HttpOnly

Attribute Flag

Domainé Path HttpOnly

We will focus on these attributes in this talk

Domain

Domain to subdomains

example.com

Set-Cookie: foo=bar; domain=.example.com

Q "] 99
sub.example.com sub.of.sub.example.com

Subdomains to subdomains

Set-Cookie: foo=bar; domain=.example.com

S

example.com sub.of.sub.example.com

Current domain

sub.example.com
;s - - - -"=-"--"-"-""-"="-"-=-"-=-"-"-"-"-"=-"=-"=-"=-—"=-=-= \
|

Set-Cookie: foo=bar;:

N e = — — —

0o 0o
example.com sub.of.sub.example.com

THIS
1S P , Follow v
avaTAR @filedescriptor

What is this cookie scoped to?

Set-Cookie: foo=bar; domain=example.com

Q Only example.com

Q Only *.example.com

() Both

THS FD C >
IS , , Follow v
avaTAR @filedescriptor

What is this cookie scoped to?

Set-Cookie: foo=bar; domain=example.com

41% Only example.com

11% Only *.example.com

48% Both

245 votes * Final results

I learned something today

| thought that domain=example.com was "set cookie on example.com only"

and domain=.example.com was "example.com and all subdomains"

Dot or no Dot?

They have no difference (old RFC vs new RFC style)
Both widen the scope of a cookie to all (sub)domains

The correct way to limit the scope is to not have the
domain attribute

Some websites add the domain attribute for all cookies

e |f one of the subdomains is compromised, such
cookies will be leaked to unauthorized parties

"Some existing user agents treat an absent Domain
attribute as if the Domain attribute were present
and contained the current host name."

— RFC 6265 (4.1.2.3.)

m Internet Explorer Cookie Interr X +

G & https://blogs.msdn.microsoft.com/ieinternals/2009/08/20/internet-explorer-cookie-internals-faq/ Dk g

@ This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use.

& Microsoft | Developer Search Q | signin

IEInternals
A look at Internet Explorer from the inside out. @EricLaw left Microsoft in 2012, and rejoined Microsoft Edge in 2018.

Follow Us

Internet Explorer Cookie Internals (FAQ)
Q3: If I don't specify a DOMAIN attribute when a cookie, IE sends it to all nested subdomains anyway?

A: Yes, a cookie set on example.com will be sent to sub2.subl.example.com.

Internet Explorer differs from other browsers in this regard. Here’s a test case.

Incognito @ ®

Learn more

Update: This behavior bug was removed from Edge by Windows 10 RS3, but remained in IE11 on Windows 10. By Windows 10 RS4

(April 2018), both Edge and Internet Explorer match other browsers.

erInIE10 https

e Still isn’t fixed in IE11 on Windows 7 / 8.1! SE===i=

A: Correct. Internet Explorer (i
dev ActiveX add-ons
WInINET (the network stack below IE) has cookie implementation based on the pre-RFC Netscape draft spec for cookies.

directives like max-age, versioned cookies, etc, are not supported in any version of Internet Explorer. caching QA
)) .] Archives
Q2: If I don't specify a leading dot when setting the DOMAIN attribute, IE doesn’t care?
January 2015 (3)
A: Correct. All current version browsers (Chrome, FF, Opera, etc) seem to treat a leading dot as implicit. Here's a test case. November 2014 (1)

October 2014 (1)

==
- &<
u

JO-

Cookie bomb

A blockbuster bomb or cookie was any of several of the largest
conventional bombs used in World War |l by the Royal Air Force (RAF).

Blockbuster bomb - Wikipedia
https://en.wikipedia.org/wiki/Blockbuster bomb

Cookie Bomb

Most servers have a length limit on request headers
When this limit is exceeded, HTTP 413 or 431 is returned
Limited cookies injection can still result in client-side DoS

Domain & Expire attributes help persist the attack across
(sub)domains.

#57356 DOM based cookie bo X +

@& HackerOne, Inc. [US] | https://hackerone.com/report

% Incognito (2) @ ®

SIGNIN | SIGN UP

|1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY = COMPANY TRYHACKERONE

filedescriptor (filedescriptor) 5655 89th 6.42 95th 3750 99th
Reputation Rank Signal Percentile Impact Percentile
45 m DOM based cookie bomb Share:
State @ Resolved (Closed) Severity No Rating (---)
Disclosed April 11, 2017 11:24am +0800 Participants .

Reported To Twitter Visibility Disclosed (Full)

Weakness Denial of Service

Bounty $280

Collapse
TIMELINE

filedescriptor submitted a report to Twitter.

Apr 19th (4 years ago)
Hi,

| would like to report an issue that allows attackers to plant a "cookie bomb" on a victim's browser, so that the victim will be unable to
access any Twitter services.

PoC

1. Go to http://innerht.ml/pocs/twitter-dom-based-cookie-bomb/ #
2. Click on the "DoS" link

3. Wait for a moment

4. Now Twitter will be unaccessible

function d(a) { II

var b = document.referrer || "none",

d = "ev_redir " + encodeURIComponent(a) + "=" + b + "; path=/";

r I

document.cookie = d;

window.location.hash != "" && d(window.location.hash.substr(1l).toLowerCase())

https://example.com/aaa...aaa > https://twitter.com/#a

https://example.com/aaa...aaa > https://twitter.com/#b

https://example.com/aaa...aaa > https://twitter.com/#c

GET / HTTP/1.1
[e..]

Cookie: ev redir a=aaa...aaaj;
ev redir b=aaa... aaa, } 8KB_I_

ev_redlr c=aaa...

»

K C £ Twitter, Inc. [US] https://twitter.com = |
| .Q [] Elements | Network | Sources Timeline Profiles Resources Audits Console PINE -) g, x .
® O 7 Views I= ™. Options: Preservelog Disable cache
_hltcr J m XHR Script Style Images Media Fonts Documents WebSockets Other (JHide data URLs
Name Status Type Initiator Size Time Timeline 1,005 1.5¢
| twitter.com 431 docu... Other 488 387ms N

__| favicon.ico 200 x-icon Other 1.2K8 393 ms

| twitter.com 431 docu... Other 481

.2 requests | 1.2 KB transferred | Finish: 1.45s

X Headers Preview Response‘Cookles‘Timlng

'Name A Value 'Domain Path Expir.. Size HTTP | Secure First-...
¥ Request Cookies 8564
_ga GA1.2.193351747.1434172703 N/A N/A N/A 32 \
_gat 1 NJA NJA N/A 8
_twitter_sess BAh7CilKZmxhc2h)QzonQWNOaW9uQ29ud... N/A N/A N/A 313 \
auth_token cc0c2259cab2fb54883b1200b13b63169b... N/A N/A N/A 53
guest_id v1%3A143417269970515979 NJA NJA N/A 34 \
lang en N/A N/A N/A 9
pid "v3:1434173638724744160371550" N/A N/JA N/A 36 \
remember_checked_on 1 N/A N/A N/A 23
 reported_tweet_id | 000000000000000000000000000000000... N/A N/A N/A 4017 |
reported_user_id 000000000000000000000000000000000... N/A N/A N/A 4018
twid *u=2993783110" N/A N/A N/A 21 \
Response Cookies 0

8 Egor Homakov: Cookie Bomb ¢ X +

© @ Not Secure | homakov.blogspot.com/2014/01/cookie-bomb-or-lets-break-internet.html

e Incognito (3) @)

More ~

Create Blog Sign In

Egor Homakov

Security consulting: Sakurity Twitter: @homakov. Subscribe to our new blog!

Saturday, January 18, 2014 Posts:
Cookie Bomb or let's break the Internet. > 2015(2)
Vv 2014 (19)
» December (3)

TL;DR | can craft a page "polluting” CDNs, blogging platforms and other major networks with my
cookies. Your browser will keep sending those cookies and servers will reject the requests, because
Cookie header will be very long. The entire Internet will look down to you.

| have no idea if it's a known trick, but | believe it should be fixed. Severity: depends. | checked only
with Chrome.

We all know a cookie can only contain 4k of data.
How many cookies can | creates? Many!

What cookies is browser going to send with every request? All of them!
How do servers usually react if the request is too long? They don't respond, like this:

= c homakov.github.io

This webpage is not available

More

If you're able to execute your own JS on SUB1.example.com it can cookie-bomb not only your SUB1
but the entire *.example.com network, including example.com.

»
>
»
»
»
»
v

November (1)
September (1)
July (1)

May (1)
March (1)
February (2)

January (9)
Turbo API: How to use
CORS without Preflights

Two "WontFix"
vulnerabilities in
Facebook Connect

Header injection in
Sinatra/Rack

Cookie Bomb or let's
break the Internet.

Account hijacking on
MtGox

Evolution of Open

Shared domains're vulnerable

e.g. github.io

by design

Public Suffix List

& https://publicsuffix.c

e Community curated

¢ Some domains cannot have
cookies

e The same list that restricts
domain=.com.tw

C & https://public

// GitHub, Inc.

// Submitted by Patrick Toome
github.io
githubusercontent.com

// GitLab, Inc.
// Submitted by Alex Hanselk:
gitlab.io

// Glitch, Inc : https://glit
// Submitted by Mads Hartmanr
glitch.me

Exploiting the unexploitable wi X +

@& https://speakerdeck.com/filedescriptor/exploiting-the-unexploitable-with-lesser-known-browser-tricks?slide=27 D¢ Incognito (5) @ ®

S) Exploiting the unexploitable with lesser known browser tricks Q

Cookie @+ Appcache = ?

1. Set many cookies on root path
2. Requests to every file will result in HTTP 413

3. Appcache’s fallback kicks in and replaces the
response

4. 777

5. Profit!

0 filedescriptor D Technology ﬁ 16

THERE'S MORE!

XSS+0Auth

e Say you have a boring XSS
 And the site is using OAuth

e Sounds like you can use the XSS to takeover accounts?

Expectation

https://google.com/oauth?client_id=example

HTTP/1.1 302 Found

Location: https://example.com/ocauth/callback?code=123

Set-Cookie: sid=123 0
Steal

\4

HTTP/1.1 302 Found
Location: https://example.com/home

Reality

https://google.com/oauth?client_id=example

\/
1. Authorization code is single-use
HTTP/1.1 302 Found

Location: https://example.com/ocauth/callback?code=123
Set-Cookie: sid=123 0
Steal

2. Intermediate HTTP Redirect is transparent

> with(new XMLHttpRequest)open('get', 'https://httpbin.org/redirect—toPurl=https://httpbin.org/redirect-to?|
url=/"',false),send(), responseURL

"https://httpbin.org/"

HTTP/1.1 302 Found
Location: https://example.com/home

XSS+@&@ +0Auth

. Perform Cookie Bomb Attack via XSS

. Embed an iframe pointing to OAuth IdP

. It redirects to target with the authorization code

. Server rejects the request due to large header

. Use XSS to get the authorization code from iframe URL

®@ O

< - C https://example.com

https://google.com/oauth?client_id=example

< C https://example.com

This page isn't working

If the problem continues, contact the site owner.

HTTP ERROR 431

/ iframe.contentWindow.location.href

https://example.com/oauth/callback?code=123

WHAT THE
buck?

I <\arded filedescriptor with a $250 bounty. Jun 7th (2 months ago)
Thank you!

I <\/arded inhibitor181 with a $250 bounty. Jun 7th (2 months ago)
Thank you!
inhibitor181 posted a comment. Jun 7th (2 months ago)

This is an account takeover POC for [l coming from a stored XSS. And after a successfull ATO the attacker can use the saved
payment methods and create orders to arbitraty addresses of any price.

I changed the status to @ Triaged. Jun 18th (2 months ago)

tescoramen | HackerOne staff posted a comment. Jun 20th (2 months ago)
Bounty amount currently being reviewed.

I <\ arded filedescriptor with a $2,250 bounty. Jun 28th (2 months ago)
We are updating the bounty for this report. Thanks again @inhibitor181!

B - \/2rded inhibitor181 with a $2,250 bounty. Jun 28th (2 months ago)
We are updating the bounty for this report. Thanks again @inhibitor181!

Path & HttpOnly

POST /admin HTTP/1.1
[e..]

Cookie: csrf token=foo; csrf token=bar

This Is a valid request

True or False?

> HITCON ZeroDay X +

@ https://zeroday.hitcon.org/about/vp

i HE BHT1E Lk SEEIGTE

124

(v ﬂ Elements Console Sources Network Performance Memory Application Security Audits
Application C Filter o

B Manifest Name Value

¢ Service Workers XSRF-TOKEN baz

B Clear storage XSRF-TOKEN foo

XSRF-TOKEN 123

Storage XSRF-TOKEN eyJpdil6ImtWVDNQSk5aaGNZNIFTWFwveCtMME...
» £ Local Storage XSRF-TOKEN bar
. Console What's New Network conditions Coverage
D] © | top v © | Filter Default levels ¥

> document.cookie = 'XSRF-TOKEN=foo;domain=hitcon.org;path=/"
"XSRF-TOKEN=foo;domain=hitcon.org;path=/"

> document.cookie = 'XSRF-TOKEN=bar;path=/about’
"XSRF-TOKEN=bar; path=/about"

> document.cookie = 'XSRF-TOKEN=baz;domain=zeroday.hitcon.org;path=/"
"XSRF-TOKEN=baz;domain=zeroday.hitcon.org;path=/"

> document.cookie = 'XSRF-TOKEN=123;domain=zeroday.hitcon.org;path=/about’
"XSRF-TOKEN=123; domain=zeroday.hitcon.org;path=/about"

Domain

.zeroda...
.hitcon....
.zeroda...
zeroda...

zeroda...

Path

/

/
/about
/
/about

Expires...
N/A
N/A
N/A
2019-0...
N/A

Size
13
13
13
288
13

Incognito @ *

«+ X
HTTP Secure SameSite
v
X
o

Cookie Tossing

Cookie key consists of the tuple (hame, domain, path)
Each cookie-key-value has their own attribute list

(Sub)domains can force a cookie with the same name to
other (sub)domains

Browser sends all cookies of the same name without
attributes

Server thus has no way to tell which one is from which
domain/path

Yummy cookies across domair X +

@ https://github.blog/2013-04-09-yummy-cookies-across-domains/

April 9, 2013 — Engineering, Featured

Yummy cookies across domains
9 Vicent Marti

Last Friday we announced and performed a migration of all GitHub Pages to their own Share
github.io domain. This was a long-planned migration, with the specific goal

of mitigating phishing attacks and cross-domain cookie vulnerabilities arising from
hosting custom user content in a subdomain of our main website.

Twitter

Facebook
There's been, however, some confusion regarding the implications and impact of these

cross-domain cookie attacks. We hope this technical blog post will help clear things up.

Cookie tossing from a subdomain
When you log in on GitHub.com, we set a session cookie through the HTTP headers
of the response. This cookie contains the session data that uniquely identifies

you:

Set-Cookie: _session=THIS_IS_A SESSION_TOKEN; path=/; expires=Sun, 01-Jan-20.

The session cookies that GitHub sends to web browsers are set on the

default domain (github.com), which means they are not accessible from any
subdomain at *.github.com . We also specify the HttpOnly attribute, which means
they

¥

Incognito @ ®

Killing @ with ™ ™. - Speake: X +

@ https://speakerdeck.com/filedescriptor/killing-with DA ¢ Incognito (2) @ ‘

S) Killing ®with ™™ Q

Killing 9 with % %

A journey from subdomain #SELFXSS to site-wide
#CSRF @Twitter

0 filedescriptor [Technology Y72 <© 29k

Scenario

Had an XSS on ton.twitter.com where contents are static

twitter.com uses auth_token for session ID and
_twitter_sess for storing CSRF token

Could modify _twitter_sess with an attacker-known value
and have site-wide CSRF

However it’s protected by HttpOnly

HttpOnly

e Cookies with this flag cannot be read/write from
JavaScript API

o Safari before version 12 has a bug that allows writing to
HttpOnly cookies with JavaScript API

e Cookie Tossing can also help “bypass” this flag, as you
can create a cookie with the same name but different key

tuple

Expectation

Name | Value @ Domain

__

_twitter_sess attacker’s twitter.com

\4

POST /i/tweet/create HTTP/1.1
[o..]

Cookie: twitter sess=attackers; twitter sess=original

authenticity token=attacker-known

Reality

Name | Value @ Domain

..

_twitter_sess attacker’s twitter.com

\4

POST /i/tweet/create HTTP/1.1
[o]

Cookie: twitter sess=original; twitter sess=attackers;

authenticity token=attacker-known

2. The user agent SHOULD sort the cookie-list in the following
order:

* Cookies with longer paths are listed before cookies with
shorter paths.

* Among cookies that have equal-length path fields, cookies with

earlier creation-times are listed before cookies with later
creation-times.

~RFC 6265 (5.4)

Precedence matters

e Specs do not mention how to handle duplicate cookies

e Most servers accept the first occurrence of cookies with
the same name (think of HPP)

e Most browsers place cookies created earlier first

2. The user agent SHOULD sort the cookie-list in the following
order:

* Cookies with longer paths are listed before cookies with
shorter paths.

* Among cookies that have equal-length path fields,

~RFC 6265 (5.4)

Revised Attack

Name 5 Value 5 Domain éPam

_twitter_sess attacker’sé twitter.com /i/

\4

POST /i/tweet/create HTTP/1.1
[o..]

Cookie: twitter sess=attackers; twitter sess=original

authenticity token=attacker-known

Practical user agent implementations have limits on the number and
size of cookies that they can store. General-use user agents SHOULD
provide each of the following minimum capabilities:

o At least 4096 bytes per cookie (as measured by the sum of the
length of the cookie's name, value, and attributes).

o At least 50 cookies per domain.

~RFC 6265 (6.1)

Overflowing Cookie Jar

 Another way to “overwrite” a HttpOnly cookie is to
remove it

e Browsers have a limitation on how many cookies a
domain can have

e When there is no space, older cookies will get deleted

e Drawback: it’s not always easy to know how many
cookies a victim has (tracking cookies are unpredictable)

More Cookie Tossing
Application

#422043 H1514 DOMXSSon | X +

@& HackerOne, Inc. [US] | https://hackerone.com/reports/422043 w Incognito (2) @ ‘

SIGN IN | SIGN UP

|1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY COMPANY

TRY HACKERONE

filedescriptor (filedescriptor) 5655 89th 6.42 95th 37.50 99th

Reputation Rank Signal Percentile Impact Percentile

174 - H1514 DOMXSS on Embedded SDK via
#422043

Shopify.APl.setWindowLocation abusing cookie Stuffing share:

State @ Resolved (Closed) Severity (] High (8.1)

Disclosed April 17, 2019 10:40pm +0800 Participants ﬂ &
Reported To Shopify Visibility Disclosed (Full)
Weakness Cross-site Scripting (XSS) - DOM

Bounty $5,000

Collapse

SUMMARY BY SHOPIFY

P

During H1-514, @filedescriptor reported an XSS issue in our Embedded App SDK that allowed for attacking legitimate apps through our
platform, due to a missing protocol check on the Shopify.APl.setWindowLocation. Since this issue would have allowed realistic attacks

against apps using the Embedded App SDK, we decided to award $2500 for this issue. As part of the event, @filedescriptor was also
awarded a bonus of $2500 for chaining multiple bugs.

TIMELINE

filedescriptor submitted a report to Shopify.

Oct 10th (10 months ago)
Hi Team!

I'm reporting a rather unusual DOMXSS that allows an attacker to perform a XSS attack on any Shopify apps that use the Embedded
SDK. To exploit this, several techniques were chained together: Cookie Stuffing -> Login CSRF -> (Not Open) Redirect -> DOMXSS.

Self-XSS to full XSS

Selectively forcing attacker’s session cookie on
certain paths

https://attacker.myshopify.com

|

_master udr=attackers;path=/admin/oauth

l Login “CSRF”

https://attacker.myshopify.com/admin/oauth/authorize?client_id=editor

|

https://script-editor.shopifycloud.com/oauth/callback?code=attackers.

document.cookie=

l Re-login victim

https://victim.myshopify.com/admin/oauth/authorize?client_id=editor

Self-XSS in iframe executing with victim’s session

https://script-editor.shopifycloud.com/oauth/callback?code=victims ¥

#423136 H1514 Session Fixatic X <+
& HackerOne, Inc. [US] | https://hackerone.com/reports/423136 w Incognito (2) @ ‘

SIGN IN | SIGN UP

|1aCkerOﬂe FORBUSINESS FORHACKERS HACKTIVITY COMPANY TRYHACKERONE

filedescriptor (filedescriptor) 5655 89th 6.42 95th 37.50 99th

Reputation Rank Signal Percentile Impact Percentile

128 H1514 Session Fixation on multiple shopify-built apps on

. . Share:
* shopifycloud.com and *shopifyapps.com
State @ Resolved (Closed) Severity No Rating (---)
Disclosed April 25, 2019 10:39am +0800 Participants n a &
Reported To Shopify Visibility Disclosed (Full)
Weakness Session Fixation
Bounty $5,000
Collapse
SUMMARY BY SHOPIFY
,»gw‘ Note: This report was submitted during our H1-514 live hacking event @, which had an expanded scope compared to our public bug
P bounty program. Some of the apps mentioned in this report are not currently in scope for our public program.
@filedescriptor noticed that several add-on applications built by Shopify were vulnerable to session fixation because they did not
generate a fresh session cookie during the OAuth2 callback phase. This could have allowed an attacker to gain access to a victim's app
session if certain conditions were met.
TIMELINE
filedescriptor submitted a report to Shopify. Oct 13th (10 months ago)
Hi team!,

I'm reporting a Session Fixation issue on multiple shopify-built apps hosted on *shopifycloud.com and *shopifyapps.com. Normally

Session Fixation

Forcing attacker’s session cookie with a subdomain
XSS

https://script-editor.shopifycloud.com

Force a session cookie scoped to .shopifycloud.com using XSS

document.cookie=' flow session=attackers;domain=.shopifycloud.com’

\4

https://victim.myshopify.com/admin/oauth/authorize?client_id=flow

OAuth redirect with authorization code

GET /oauth/callback?code=victims HTTP/1.1
Host: flow.shopifycloud.com
Cookie: flow session=attackers

Implementation
Discrepancy

Multiple Cookies at Once?

e \We can only set one cookie at a time in a single Set-
Cookie header

e However, the older specs allow setting multiple in a single
Set-Cookie header

XSS by tossing cookies - WeS: X +

& > C @ https://wesecureapp.com/2017/07/10/xss-by-tossing-

& WeSecureApp

cookies/ Yr Incognito (4) @ ®

Services v Solutions v Vertical v Blog Careers About Strobes

XSS by tossing cookies

JULY 10, 2017 | BY ESHWARGETENV@WSA | UNCATEGORIZED

All cross site scripting vulnerabilities cannot be exploited easily and would need a vulnerablity chain to exploit them

For example a self XSS that only executes in your profile, here is how whitton used minor OAuth flaws to exploit a cross site scripting in Uber

https://whitton.io/articles/uber-turning-self-xss-into-good-xss/

How about a XSS that needs a lot of user interaction?

This is how Sasi used a clicking vulnerability to succesfully exploit a xss in Google
http://sasi2103.blogspot.in/2016/09/combination-of-techniques-lead-to-dom.html

What about a Cross site scripting that needs an arbitrary cookie?

Here is how we found cross site scripting vulnerabilities

in Outlook and Twitter by tossing cookies in Safari browser.

Outlook Client Side Stored Cross Site Scripting Vulnerability

There was a simple cross site scripting on outlook.live.com, a value from cookie was directly reflected back in the source without any filtering.

Request

Privacy & Cookies Policy l

Cookie based XSS

Exploiting limite

d Cookie Injection with Safari

“Informally, the Set-Cookie response header
comprises the token Set-Cookie:, followed by a
comma-separated list of one or more cookies.”

~RFC 2109 (4.2.2)

Set-Cookie: foo=123; path=/admin; HttpOnly;, bar=456; Secure

Works in Safari before version 10

GET /admin HTTP/1.1

[o..]
Cookie: foo=123; bar=456

https://outlook.live.com/owa/?realm=hotmail.com;, Clientid="-alert(2)-'
HTTP/1.1 200 OK

|

Set-Cookie: realm=hotmail.com;, ClientId='-alert(2)-'

|

GET / HTTP/1.1 _ _
[oo.] Safari sets 2 cookies

Cookie: realm=hotmail.com; ClientId='-alert(2)-'

|

window.clientId = ''-—alert(2)-'";

#14883 [mobile.twitter.com /1 X +
C & HackerOne, Inc. [US] | https://hackerone.com/reports/14883 Dx Incognito (4) @ .

SIGNIN | SIGN UP

I1a Cke rone FORBUSINESS FORHACKERS HACKTIVITY = COMPANY TRYHACKERONE

“ Sergey Bobrov (bobrov) 5910 86th 6.34 95th 15.97 84th
— Reputation Rank Signal Percentile Impact Percentile
1 [mobile.twitter.com / twitter.com] CSRF protection bypass Share:
State @ Resolved (Closed) Severity No Rating (---)
Disclosed May 5, 2015 12:09am +0800 Participants ([§
Reported To Twitter Visibility Disclosed (Full)

Weakness Cross-Site Request Forgery (CSRF)

Collapse

TIMELINE

n bobrov submitted a report to Twitter. Jun 3rd (5 years ago)
L | shall explain all the steps to create the final PoC in order to be more clear.

Part 1. Cookie Injection via Google Analytics

1) Google Analytics sets the cookie to track user source:
123456.123456789.11.2.utmcsr=[HOST]|utmccn=(referral) Jutmcmd=referrallutmcct=[PATH]
For example:

123456.123456789.11.2.utmcsr=blackfan.rulutmccn=(referral) Jutmcmd=referral|utmcct=/path/
2) User fully controls path in Referer and it is not filtered before being put in __utmz

Part 2. Cookie parsing peculiarities by different web servers

1) A typical Cookie sent by a web browser looks like this:

SRF Cookie Injection

erver accepting comma separated cookies

“For backward compatibility, the separator in the
Cookie header is semi-colon (;) everywhere. A
server SHOULD also accept comma (,) as the
separator between cookie-values for future
compatibility.”

~RFC 2965 (3.3.4)

http://blackfan.ru/r/,m5 csrf tkn=x,;domain=.twitter.com;path=/

Cookie set by Google Analytics on translation.twitter.com scoped to .twitter.com

_utmz=123456.123456789.11.2.utmcsr=blackfan.rujutmccn=(referral)jJutmcct=/
r/,m5_csrf_tkn=x

\4

POST /messages/follow HTTP/1.1

[oo] Twitter’s server parses it as 2 cookies

Cookie: utmz=123456.123456789.11.2.utmcsr=blackfan.ru|
utmccn=(referral) |utmcct=/r/,m5 csrf tkn=x

m5 csrf tkn=x

Defense

Cookie Prefixes

Cookies prefixed with __Host- cannot have Domain
attribute

This prevents (sub)domains from forcing a cookie the
current domain doesn’t want

Cookies intended for (sub)domains are still vulnerable to
Cookie Tossing

Use a separate domain for user generated assets

N

N
A

document.cookie = '__Host-foo=bar; domain=example.com’
" _Host-foo=bar; domain=example.com"
document.cookie

Servers must only
follow RFC 6265

® ® ® [F Intent to Implement and Ship: - X +

& C & https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/gf1ReqJdBAAJ DA ¢ Incognito (5) @ ®

GO gle Search for messages

Groups “ C 1 0of 99+ > 20 . QO -

« blink-dev»
Home Intent to Implement and Ship: Cookies with SameSite by default
29 posts by 13 authors &

Click on a group’s star
icon to add it to your Lily Chen May 25 (o
favorites

Other recipients: morl...@chromium.org, mk...@chromium.org

~ Recently viewed Contact emails

blink-dev chl...@chromium.o

Explainer

Il PSA: CSRF & others will be dead in 2020®

https://web.dev/samesite-cookies-explained

Design doc/Spec
See spec changes proposed in explainer.
TAG review request.

Summary
Treat cookies as SameSite=Lax by default if no SameSite attribute is specified. Developers would be able to opt-into the status quo of unrestricted use by explicitly asserting SameSite=None.

Motivation

“SameSite” is a reasonably robust defense against some classes of cross-site request forgery (CSRF) attacks, but developers currently need to opt-into its protections by specifying a SameSite
attribute, i.e., developers are vulnerable to CSRF attacks by default. This change would allow developers to be protected by default, while allowing sites that require state in cross-site requests to
opt-in to the status quo’s less-secure model. In addition, forcing sites to opt-in to SameSite=None gives the user agent the ability to provide users more transparency and control over tracking.

Risks
Interoperability and Compatibility
Some sites relying on third-party cookies may break temporarily until developers add “SameSite=None”. Most browsers (except for Safari; bug filed here) that do not yet support
SameSite=None should just ignore that attribute and apply the status quo default of “no restriction”, which has the same effect as SameSite=None.

Edge: Public support
Firefox: In development

Q&A

find me on Twitter @filedescriptor

