
JiuWei(九尾)

HITCON, August 2019

Cross Platform Multi Arch Shellcode Executor

NGUYEN Anh Quynh, aquynh -at- gmail.com

KaiJern LAU, kj -at- qiling.io 

TianZe DING, dliv3 -at- gmail.com 

BoWen SUN, w1tcher.bupt -at- gmail.com 

huitao, CHEN null -at- qiling.io 



Congrats HITCON for the DEFCON CTF!

Pwnie Award Too



About kaijern.xwings.L

Electronic fan boy, making 

toys from hacker to hacker

Badge Maker

> Reversing Binary

> Reversing IoT Devices

> Part Time CtF player

Crew since 2008, from Kuala 

Lumpur till now AMS, SG, 

BEIJING and DXB

Broker

> 2006 (ctf) till end of time

> Core Crew

> Review Board

> 2005, HITB CTF, Malaysia, First Place /w 20+ Intl. Team 

> 2010, Hack In The Box, Malaysia, Speaker

> 2012, Codegate, Korean, Speaker

> 2015, VXRL, Hong Kong, Speaker

> 2015, HITCON Pre Qual, Taiwan, Top 10 /w 4K+ Intl. Team

> 2016, Codegate PreQual, Korean, Top 5 /w 3K+ Intl. Team

> 2016, Qcon, Beijing, Speaker

> 2016, Kcon, Beijing, Speaker

> 2016, Intl. Antivirus Conference, Tianjin, Speaker

> 2019, Defcon 27 Demolabs

Working hour is 007 and not 

996. Hoping making the 

world a better place

Director/Founder

> IoT Research

> Blockchain Research

> Fun Security Research

> 2017, Kcon, Beijing, Trainer

> 2017, DC852, Hong Kong, Speaker

> 2018, KCON, Beijing, Trainer

> 2018, DC010, Beijing, Speaker

> 2018, Brucon, Brussel, Speaker

> 2018, H2HC, San Paolo, Brazil, Speaker

> 2018, HITB, Beijing/Dubai, Speaker

> 2018, beVX, Hong Kong, Speaker

> 2019, VxCON, Hong Kong, Speaker

> MacOS SMC, Buffer Overflow, suid

> GDB, PE File Parser Buffer Overflow

> Metasploit Module, Snort Back Oriffice

> Linux ASLR bypass, Return to EDX



About NGUYEN Anh Quynh

> Nanyang Technological University, Singapore

> PhD in Computer Science

> Operating System, Virtual Machine, Binary analysis, etc

> Usenix, ACM, IEEE, LNCS, etc

> Blackhat USA/EU/Asia, DEFCON, Recon, HackInTheBox, 

Syscan, etc

> Capstone disassembler: http://capstone-engine.org

> Unicorn emulator: http://unicorn-engine.org

> Keystone assembler: http://keystone-engine.org



About Dliv3



All About Exploitation and Shellcoding

Agenda

Challenges

Solutions

JiuWei

Why JiuWei

DEMO



Exploitation



Vulnerability Exploitation Flow

Smash Input

Program Crash

Craft Payload

Control Execution Flow

Shellcode Execution

Full Control

Full
Control

ShellcodeExploitation
Memory

Corruption



Shellcode



Traditional Shellcode vs Modern Shellcode

More Complex

Harder to detect

Designed to bypass detection

Detection can be

Network

System/OS level



Why Modern Shellcode

2nd Level Firewall

URL Filtering

Bandwidth Management
& Prioritization

1st Level Firewall

Antivirus

IPS/IDS

Internet

IPS/IPS or maybe a smarter idea now

Fire What

Log Analysis or SIEM

Content Filtering or Busy Body Second Layer IPS

Antivirus, Anti Malware, Anti APT and Anti PC

Antivirus

Antivirus

Log Analysis

Antivirus



Why Shellcode Analysis



Hunting Shellcode

Locate Shellcode

Network Traffic

Email Traffic

Daily Received File

Identify Shellcode

Extract Shellcode from Mess

Break Shellcode

Read and Analyze Shellcode

Extract Shellcode Reading Shellcode

IT Security Department

Security Appliance Vendor

Anti Malware Vendor

Government Official

Who Needs To Analyze Shellcode

Detecting shellcode is easier compare to 0 day

Post exploitation behavior

How to go deeper

How to bypass current security measurement

Why Needs To Analyze Shellcode



Where to Start



Disassembler

GDB, IDA, R2 and the list goes on, static
IDA, GBD, WinDBG and the List Goes On



Dynamic Analysis



Full ARCH Emulator

MIPS ARM AARCH64

X86_32, X86_64 and not limited to



Full OS Emulator

*BSD Linux OSX

X86_32, X86_64 and not limited toWindows Workstation, Windows Server and not limited toWindows Server and Windows Workstation



Expectation



Shellcode Analysis Is Not Easy

Current Method

A New HOPE

AFTER obtain suspicious shellcode

Manually check if this is a shellcode

Manually study the shellcode

Manually prepare verdict

AFTER obtain suspicious shellcode

Automated check if this is a shellcode

Automated shellcode execution

Automated generate disassembler and 
execution report



What is Required



CPU Emulator

System Emulator != CPU Emulator

Over

Emulate



User Mode Emulation

qemu-usermode

Over Emulate

Limited OS Support, Very Limited

No Multi OS Support

No Instrumentation

usercorn

Very good project !

Mostly *nix based only

Limited OS Support (No Windows)

Go and Lua is not hacker’s friendly

WINE

Limited ARCH Support

Limited OS Support, only Windows

Not Sandbox Designed

No Instrumentation

WSL/2

Limited ARCH Support

Only Linux and run in Windows

Not Sandboxed, It linked to /mnt/c

No Instrumentation (maybe)

Binee

Very good project too

Only X86 (32 and 64)

Limited OS Support (No *NIX)

Again, is GO



To Make A Good “Hackable Emulator”

You Need to Be a ASSEMBLER

Each Good for Different ARCH 

Each Good for Different Platform

Only Able to Use in Limited Platform

Steep Leaving Curve

Too Complicated To Choose From

Each Good for Different ARCH 

Each Good for Different Platform

Only Able to Use in Limited Platform

Steep Leaving Curve

Too Complicated to Pick One

Too Debugger Oriented

Limited Option have with Assembler and Debugger

Normally only a Helping Script / IDAPython

Limited Function



JiuWei



What Is JiuWei

Support Different OSes

Linux Shellcode

Windows Shellcode

BSD Shellcode

OSX Shellcode

Cross Platform

Support Architecture

X86_32, X86_64

MIPSel

ARM

AARCH64

Multi Architecture

CROSS Platform

Multi ARCH

Written in Python

Support Multiple File Input

Support Various Output



Based On The Industrial Standard RE Framework

Dr Quynh

Disassembler

Industry Standard

Strip from LLVM

Capstone Engine Unicorn Engine Keystone Engine

Dr Quynh

CPU Emulator

Industry Standard

Strip From QEMU

Dr Quynh

Assembler

Industry Standard

Strip from LLVM



Building Blocks

RE Frame Work Emulate Syscall and API Proven Hackers Language



How It Works



Support Various Input Format

Able to take in different format

asm

binary

Direct hex input

hex as file

Input Method

Check Input Data

Input Conversion

“compile” if input file is a asm

Check invalid hex char if input is hex

Pre-Processing

pre-processing

binary

asm

hex as file

hex as argv

INJECT

INJECT

arm/x86/mips

Linux/OSX/Windows



Support Various Input Format – In Action

hex/binary asm

direct

4 Different Input

binary



Syscall and API Emulator

Emulate Linux, *BSD and OSX

Return or Emulate Syscall

Syscall support different architecture

Support conversion such as binary to ascii

Syscall Emulation

Emulate Windows Base System

Windows 10 with DLL – 64bit

Windows 7 with DLL – 32bit

Emulate as many function as possible, eg, network

API Emulation

arm/x86/mips

Linux/OSX/Windows

emu

emu

Execution /w

Kernel emulation



Syscall and API Emulator – In Action

– In Action

*Nix Based Syscall and Windows Function Call



Support Various Output Format

Complete Execution Dump

Long and way too long

Every detailed is being reported

Hackers style

Short

Only Human Readable Report

Limited Report, not for analysis

Report for the Boss

executive

Execution /w

Kernel emulation

dump

emu

emu



Support Various Output Format – In Action

Executive Summary and Hackers Dump



How Does JiuWei Helps



Analyze Shellcode At Large Scale

pre-processing

binary

asm

hex as file

hex as argv INJECT

INJECT

executiveemu

emu

dump

arm/x86/mips

Linux/OSX/Windows

Execution /w

Kernel emulation

Automated and Highly Performance and Scalable Platform



How Deep Did We Dig



CPU Emulator

Write Directly Into Register and Memory

Write Into Memory

Write Into Register



*nix Emulator

Almost the same for OSX/Linux/*BSD

Handle Interript Ourself

Emulate Syscall

Print or Emulate Code

Prepare Execution Report

Sample Code on How To Execute X86_32Bit Linux Shellcode



Windows Emulator 0x1

Setup TEB Structure

Setup PEB Structure

Setup PEB_LDR_DATA Structure

Setup segment register fs/gs

x86_32 : Setup GDT/GDTR

x86_64 : Use wrmsr to setup gs



Windows Emulator 0x2

Sample Code on How To Execute X86_32/64bit Windows Shellcode

Parse DLL & Get All Export Functions

Hook Windows API

Setup LDR_DATA_TABLE_ENTRY for Loaded Modules

InMemoryOrderModuleList

InLoadOrderModuleList

InInitializationOrderList

Setup Three Double Linked Lists



X86 32/64 Series

X86 32bit GDT For Windows

X86 32/64bit GDT For Linux

It took us sometime to fix the GDT and Set Threat Area



ARM/64 Series

ARM and Thumb

Making Sure Loader is compatable

ARM MCR instruction for Set TLS

ARM Kernel Initialization

ARM and ARM64 Enable VFP



MIPS32EL Series

MIPS Comes with CO Processor

Some Config Sits in CO Processor

Unicorn Does Not Support Floating Point

Patch Unicorn to Support Co Processors

Custom ASM for Set Thread Area



Work In Progress



OSX/FreeBSD

Still WIP, will be ready before Alpha Test



DEMO



Demo Setup

XPS + VM + Ubuntu 64Bit



Linux AARCH 64

AARCH64 Reverse TCP Shellcode



Linux x86_32 input as ASM

Debug and Quiet Mode with HEX, Binary and ASM Input



Running a Windows Shellcode

Calling calc.exe



One Step A Head

and

The ACTUAL DEMO



How Does It Work

Setup

PE

elf

macho

PE32+ Loader

Loader

post processemu

emu

result

API / Syscall

Linux/OSX/Windows

CPU Hook

Base OS can be Windows/Linux/BSD or OSX

And not limited to ARCH



Demo Setup

VMware with Ubuntu 64Bit on XPS, with ACTUAL AD-HOC DEMO



Some Hello World Demo

VMware with Ubuntu 64Bit on XPS

Helloworld

For Different ARCH

Helloworld

For Different OS
qiling

Walk Thru



Linux Demo

X86

Reversing.kr Challenge ARM64 Debug Mode

VMware with Ubuntu 64Bit on XPS

ARM

WiFi Router Firmware



Windows Demo

Real CTF Challenge Half “Cooked” Wannacry

Emulating Windows DialogBox within Qiling

Patching a

CrackMe Challenge



Call for Alpha Tester

info@qiling.io 

NGUYEN Anh Quynh, aquynh -at- gmail.com

KaiJern LAU, kj -at- qiling.io 

TianZe DING, dliv3 -at- gmail.com 

BoWen SUN, w1tcher.bupt -at- gmail.com 

huitao, CHEN null -at- qiling.io 

Subject: Qiling/Jiuwei Alpha

Content: Your Github or Gitlab


